Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.932
1.
J Chromatogr A ; 1725: 464943, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38691924

In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic ß-lactam antibiotics and ß-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.


Cefoperazone , Cefuroxime , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Nanotubes , Silicon Dioxide , Solid Phase Extraction , Sulbactam , Cefoperazone/blood , Cefoperazone/chemistry , Humans , Sulbactam/blood , Sulbactam/chemistry , Solid Phase Extraction/methods , Silicon Dioxide/chemistry , Nanotubes/chemistry , Cefuroxime/blood , Cefuroxime/chemistry , Clay/chemistry , Adsorption , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Polyethyleneimine/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
2.
Langmuir ; 40(19): 10261-10269, 2024 May 14.
Article En | MEDLINE | ID: mdl-38693862

Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of ß-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.


Calcium Phosphates , Carnosine , Dipeptidases , Enzymes, Immobilized , Manganese , Nanoparticles , Polyethyleneimine , Carnosine/chemistry , Carnosine/metabolism , Polyethyleneimine/chemistry , Manganese/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Dipeptidases/metabolism , Dipeptidases/chemistry , Serratia marcescens/enzymology , Biocatalysis
3.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731398

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
4.
Colloids Surf B Biointerfaces ; 238: 113904, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603845

Ursodeoxycholic acid (UDCA) is the preferred treatment for various types of cholestasis, however, its effectiveness is limited because of its insolubility in water. We used polyethylene glycol (PEG) and cationic polymer polyethylenimine (PEI) to double-modify graphite oxide (PPG) as a drug delivery system. UDCA was successfully loaded onto PPG through intermolecular interactions to form UDCA-PPG nanoparticles. UDCA-PPG nanoparticles not only improve the solubility and dispersibility of UDCA, but also have good biocompatibility and stability, which significantly improve the delivery rate of UDCA. The results indicated that UDCA-PPG significantly reduced ROS levels, promoted cell proliferation, protected mitochondrial membrane potential, reduced DNA damage and reduced apoptosis in the DCA-induced cell model. In a mouse cholestasis model established by bile duct ligation (BDL), UDCA-PPG improved liver necrosis, fibrosis, and mitochondrial damage and reduced serum ALT and AST levels, which were superior to those in the UDCA-treated group. UDCA-PPG reduced the expression of the apoptosis-related proteins, Caspase-3 and Bax, increased the expression of Bcl-2, and reduced the expression of the oxidative stress-related proteins, NQO and HO-1, as well as the autophagy-related proteins LC3, p62 and p-p62. Therefore, UDCA-PPG can enhance the therapeutic effect of UDCA in cholestasis, by significantly improving drug dispersibility and stability, extending circulation time in vivo, promoting absorption, decreasing ROS levels, enhancing autophagy flow and inhibiting apoptosis via the Bcl-2/Bax signaling pathway.


Apoptosis , Cholestasis , Graphite , Hepatocytes , Nanocomposites , Ursodeoxycholic Acid , Graphite/chemistry , Graphite/pharmacology , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/chemistry , Animals , Apoptosis/drug effects , Nanocomposites/chemistry , Mice , Cholestasis/drug therapy , Cholestasis/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Humans
5.
Int J Biol Macromol ; 267(Pt 1): 131390, 2024 May.
Article En | MEDLINE | ID: mdl-38582473

In recent decades, bio-polymeric nanogels have become a forefront in medical research as innovative in-vivo drug carriers. This study introduces a pH-sensitive chitosan nanoparticles/P(N-Isopropylacrylamide-co-Acrylic acid) nanogel (CSNPs/P(NIPAm-co-AAc)), making significant advancements. The nanogel effectively encapsulated doxorubicin hydrochloride (Dx. HCl), a model drug, within its compartments through electrostatic binding. Comparing nano chitosan (CSNPs) before and after integrating copolymerized P(NIPAm-co-AAc), highlighting an improved and adaptable nanogel structure with responsive behaviors. The intraperitoneal delivery of Dx-loaded nanogel (Dx@N.gel) to Ehrlich ascites carcinoma (Eh)-bearing mice at doses equivalent to 1.5 and 3 mg/kg of Dx per day for 14 days exhibited superiority over the administration of free Dx. Dx@N.gel demonstrated heightened anticancer activity, significantly improving mean survival rates in Eh mice. The nanogel's multifaceted defense mechanism mitigated oxidative stress, inhibited lipid peroxidation, and curbed nitric oxide formation induced by free Dx. It effectively countered hepatic DNA deterioration, normalized elevated liver and cardiac enzyme levels, and ameliorated renal complications. This pH-responsive CSNPs/P(NIPAm-co-AAc) nanogel loaded with Dx represents a paradigm shift in antitumor drug delivery. Its efficacy and ability to minimize side effects, contrasting sharply with those of free Dx, offer a promising future where potent cancer therapies seamlessly align with patient well-being.


Carcinoma, Ehrlich Tumor , Chitosan , Doxorubicin , Drug Carriers , Nanogels , Polyethyleneimine , Animals , Chitosan/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Mice , Drug Carriers/chemistry , Nanogels/chemistry , Drug Liberation , Polyethylene Glycols/chemistry , Drug Delivery Systems , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Oxidative Stress/drug effects
6.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38667154

We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.


Biosensing Techniques , Ferrous Compounds , Glucose , Graphite , Metallocenes , Polyethyleneimine , Graphite/chemistry , Metallocenes/chemistry , Ferrous Compounds/chemistry , Polyethyleneimine/chemistry , Glucose/analysis , Electrodes , Oxidation-Reduction
7.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38610380

Environmental monitoring and the detection of antibiotic contaminants require expensive and time-consuming techniques. To overcome these challenges, gold nanoparticle-mediated fluorometric "turn-on" detection of Polymyxin B (PMB) in an aqueous medium was undertaken. The molecular weight of polyethyleneimine (PEI)-dependent physicochemical tuning of gold nanoparticles (PEI@AuNPs) was achieved and employed for the same. The three variable molecular weights of branched polyethyleneimine (MW 750, 60, and 1.3 kDa) molecules controlled the nano-geometry of the gold nanoparticles along with enhanced stabilization at room temperature. The synthesized gold nanoparticles were characterized through various advanced techniques. The results revealed that polyethyleneimine-stabilized gold nanoparticles (PEI@AuNP-1-3) were 4.5, 7.0, and 52.5 nm in size with spherical shapes, and the zeta potential values were 29.9, 22.5, and 16.6 mV, respectively. Accordingly, the PEI@AuNPs probes demonstrated high sensitivity and selectivity, with a linear relationship curve over a concentration range of 1-6 µM for polymyxin B. The limit of detection (LOD) was calculated as 8.5 nM. This is the first unique report of gold nanoparticle nano-geometry-dependent FRET-based turn-on detection of PMB in an aqueous medium. We believe that this approach would offer a complementary strategy for the development of a highly sophisticated and advanced sensing system for PMB and act as a template for the development of new nanomaterial-based engineered sensors for rapid antibiotic detection in environmental as well as biological samples.


Metal Nanoparticles , Polymyxin B , Gold , Molecular Weight , Polyethyleneimine , Fluorescence Resonance Energy Transfer , Anti-Bacterial Agents
8.
AAPS PharmSciTech ; 25(4): 83, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605211

Smart nanomedicinal treatment for cancer manifests a solubility challenge with inherent nanoscale size and nonspecific release with stimuli-responsive potential. This is the limelight in novel chemotherapy to pursue physiochemical differences between the tumor microenvironment (TME) and normal cells, which introduces active groups of nanocarriers responding to various stimuli, endowing them with concise responses to various tumor-related signals. The nanogels were successfully prepared by a modified solvent evaporation technique. Nine batches were formulated by changing the chitosan concentration (12, 14, 16 mg/ml) and sonication time (5, 10, 15 min). The formulations were optimized for particle size and zeta potential with high percent entrapment efficiency (%EE) through Central Composite Design software. The optimized batch F7 had a 182-nm size and high zeta potential (64.5 mV) with 98% EE. The drug release of F7 was higher at pH 6 (97.556%) than at pH 7.4 (45.113%). The pharmacokinetic study shows that the release follows the Hixon plot model (R2 = 0.9334) that shifts to zero order (R2 = 0.9149). The nanogel F7 was observed for stability and showed an absence of color change, phase separation, and opacity for 6 months. In the present study, the pH difference between cancer cells and normal cells is the key point of the smart nanogel. This study is promising but challenging depending on the in vivo study. The nanogel was successfully prepared and evaluated for pH-responsive release. As hemangiosarcoma commonly occurs in dogs, this formulation helps to limit the difficulties with administration.


Hemangiosarcoma , Polyethylene Glycols , Polyethyleneimine , Polymers , Animals , Dogs , Nanogels , Sorafenib , Hydrogen-Ion Concentration , Drug Carriers , Tumor Microenvironment
9.
Soft Matter ; 20(16): 3499-3507, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38595066

Polymeric vesicles are perspective vehicles for fabricating enzymatic nanoreactors towards diverse biomedical and catalytic applications, yet the design of stable and permeable vesicles remains challenging. Herein, we developed polyion complex (PIC) vesicles featuring high stability and a permeable membrane for adequate enzyme loading and activation. Our design relies on co-assembly of an anionic diblock copolymer (PSS96-b-PEO113) with cationic branched poly(ethylenimine) (PEI). The polymer combination endows strong electrostatic interaction between the PSS and PEI building blocks, so their assembly can be implemented at a high salt concentration (500 mM NaCl), under which the charge interaction of the enzyme-polymer is inhibited. This control realizes the successful and safe loading of enzymes associated with the formation of stable PIC vesicles with an intrinsic permeable membrane that is favourable for enhancing enzymatic activity. The control factors for vesicle formation and enzyme loading were investigated, and the general application of loading different enzymes for cascade reaction was validated as well. Our study reveals that proper design and combination of polyelectrolytes is a facile strategy for fabricating stable and permeable polymeric PIC vesicles, which exhibit clear advantages for loading and activating enzymes, consequently boosting their diverse applications as enzymatic nanoreactors.


Polyethyleneimine , Polyethyleneimine/chemistry , Permeability , Polymers/chemistry , Polyelectrolytes/chemistry
10.
J Mater Chem B ; 12(16): 3927-3946, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563779

Messenger RNA (mRNA) based vaccines have been introduced worldwide to combat the Covid-19 pandemic. These vaccines consist of non-amplifying mRNA formulated in lipid nanoparticles (LNPs). Consequently, LNPs are considered benchmark non-viral carriers for nucleic acid delivery. However, the formulation and manufacturing of these mRNA-LNP nanoparticles are expensive and time-consuming. Therefore, we used self-amplifying mRNA (saRNA) and synthesized novel polymers as alternative non-viral carrier platform to LNPs, which enable a simple, rapid, one-pot formulation of saRNA-polyplexes. Our novel polymer-based carrier platform consists of randomly concatenated ethylenimine and propylenimine comonomers, resulting in linear, poly(ethylenimine-ran-propylenimine) (L-PEIx-ran-PPIy) copolymers with controllable degrees of polymerization. Here we demonstrate in multiple cell lines, that our saRNA-polyplexes show comparable to higher in vitro saRNA transfection efficiencies and higher cell viabilities compared to formulations with Lipofectamine MessengerMAX™ (LFMM), a commercial, lipid-based carrier considered to be the in vitro gold standard carrier. This is especially true for our in vitro best performing saRNA-polyplexes with N/P 5, which are characterised with a size below 100 nm, a positive zeta potential, a near 100% encapsulation efficiency, a high retention capacity and the ability to protect the saRNA from degradation mediated by RNase A. Furthermore, an ex vivo hemolysis assay with pig red blood cells demonstrated that the saRNA-polyplexes exhibit negligible hemolytic activity. Finally, a bioluminescence-based in vivo study was performed over a 35-day period, and showed that the polymers result in a higher and prolonged bioluminescent signal compared to naked saRNA and L-PEI based polyplexes. Moreover, the polymers show different expression profiles compared to those of LNPs, with one of our new polymers (L-PPI250) demonstrating a higher sustained expression for at least 35 days after injection.


Polyethyleneimine , RNA, Messenger , Transfection , Animals , Transfection/methods , Polyethyleneimine/chemistry , Humans , RNA, Messenger/genetics , Mice , Polypropylenes/chemistry , Polymers/chemistry , Drug Carriers/chemistry , SARS-CoV-2/drug effects , Nanoparticles/chemistry
11.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564033

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Cymbopogon , Drinking Water , Kidney Calculi , Polyethylene Glycols , Polyethyleneimine , Urolithiasis , Animals , Rats , Petroselinum , Ammonium Chloride , Gum Arabic , Emulsions , Catalase , Magnesium , Nanogels , Urolithiasis/chemically induced , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Seeds , Antioxidants/therapeutic use , Ethanol , Glutathione , Oxalates , Ethylene Glycols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561720

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Cichlids , Fish Diseases , Polyethylene Glycols , Polyethyleneimine , Pseudomonas putida , Titanium , Animals , Antioxidants , Nanogels , Diet , Dietary Supplements , Animal Feed/analysis , Fish Diseases/drug therapy , Fish Diseases/microbiology
13.
BMC Complement Med Ther ; 24(1): 138, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566054

Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.


Camphor , Polyethylene Glycols , Polyethyleneimine , Thymol , Thymol/pharmacology , Nanogels , Camphor/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli
14.
Sci Rep ; 14(1): 9270, 2024 04 23.
Article En | MEDLINE | ID: mdl-38649421

The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.


Antineoplastic Agents , Apoptosis , Chitosan , Colchicine , Colchicine/analogs & derivatives , Lauric Acids , Mouth Neoplasms , Nanogels , Polyethyleneimine , Humans , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Lauric Acids/chemistry , Lauric Acids/pharmacology , Cell Line, Tumor , Nanogels/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Colchicine/pharmacology , Apoptosis/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Molecular Docking Simulation , Cell Proliferation/drug effects , Cell Survival/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
15.
J Chromatogr A ; 1723: 464914, 2024 May 24.
Article En | MEDLINE | ID: mdl-38640880

This article describes the effect of modification with organic bases such as uracil (U) and polyethyleneimine (PEI) on the adsorption and chromatographic properties of poly(1-trimethylsilyl-1-propyne) (PTMSP) used as a stationary phase (SP) in packed and capillary columns. It was shown that the sorbents prepared on the basis of diatomite Chromosorb P NAW support and successively modified with 9 wt.% PTMSP and 1 wt.% U (or PEI) (PC-U and PC-PEI samples, respectively), have a mesoporous structure. The IR spectrum shows the presence of carbonyl groups in the sorbent modified with uracil. The impregnation of the Chromosorb P NAW + (9/1) wt.% PTMSP sorbent with a polyethyleneimine solution leads to the appearance in the spectrum of bands characterizing NH stretching and bending vibrations, as well as a band at 1310 cm-1 which can be attributed to CN bond vibrations. The chromatographic properties of the studied sorbents differ significantly from the properties of the initial PTMSP. Packed columns PC-U and PC-PEI, as well as capillary columns with a polyethyleneimine-modified PTMSP layer, allow one to selectively separate mixtures of polar and non-polar compounds and structural isomers of hydrocarbons. Methanol on these columns is eluted in the form of a symmetrical peak separately from propane, propylene and other associated hydrocarbon impurities in commercial (technical, target) n-butane.


Polyethyleneimine , Polyethyleneimine/chemistry , Adsorption , Trimethylsilyl Compounds/chemistry , Uracil/chemistry , Uracil/analogs & derivatives , Organosilicon Compounds/chemistry , Porosity
16.
Chemosphere ; 357: 142100, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657697

Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.


Coloring Agents , Emulsions , Nanoparticles , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Emulsions/chemistry , Nanoparticles/chemistry , Porosity , Water Pollutants, Chemical/chemistry , Tannins/chemistry , Wastewater/chemistry , Water Purification/methods , Gallic Acid/chemistry , Polyethyleneimine/chemistry
17.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Article En | MEDLINE | ID: mdl-38652326

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Cobalt , Colorimetry , Glutathione Transferase , Manganese Compounds , Metal Nanoparticles , Oxides , Polyethyleneimine , Silver , Polyethyleneimine/chemistry , Silver/chemistry , Cobalt/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Limit of Detection , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Humans , Glutathione/chemistry , Oxidation-Reduction , Biosensing Techniques/methods , Phenylenediamines/chemistry , Nanostructures/chemistry
18.
Int J Biol Macromol ; 266(Pt 2): 131284, 2024 May.
Article En | MEDLINE | ID: mdl-38569984

Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.


Antioxidants , Biological Availability , Nanogels , Quercetin , Whey Proteins , Zein , Quercetin/chemistry , Quercetin/pharmacology , Whey Proteins/chemistry , Zein/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Nanogels/chemistry , Hydrogen-Ion Concentration , Acetic Acid/chemistry , Polyethyleneimine/chemistry , Polyethylene Glycols/chemistry , Drug Stability , Drug Carriers/chemistry
19.
Environ Pollut ; 348: 123745, 2024 May 01.
Article En | MEDLINE | ID: mdl-38499169

The article discusses the removal of methylene blue (MB) dye, a common cationic dye used in the textile industry, from aqueous solutions through an adsorption process. The use of porous components as adsorbents are shown to facilitate complete separation after the process is completed. The substrate was synthesized by connecting zinc copper ferrite (ZnCuFe2O4), polyethyleneimine (PEI), and Graphene Oxide (GO) sheets to MCM-48, which is a mesoporous material. The surface of MCM-48 was modified using CPTMS, which created an O-Si-Cl bridge, thereby improving the adsorption rate. The substrate was shown to have suitable sites for electrostatic interactions and creating hydrogen bonds with MB. The adsorption process from the Freundlich isotherm (R2 = 0.9224) and the pseudo-second-order diagram (R2 = 0.9927) demonstrates the adsorption of several layers of dye on the heterogeneous surface of the substrate. The synthesized substrate was also shown to have good bactericidal activity against E. coli and S. aureus bacterial strain. Furthermore, the substrate maintained its initial ability to adsorb MB dye for four consecutive cycles. The research resulted that ZnCuFe2O4@MCM-48/PEI-GO substrate has the potential for efficient and economical removal of MB dye from aqueous solutions (R = 88.82%) (qmax = 294.1176 mg. g-1), making it a promising solution for the disposal of harmful industrial waste.


Ferric Compounds , Graphite , Nanoparticles , Water Pollutants, Chemical , Water Purification , Silicon Dioxide , Polyethyleneimine , Copper , Zinc , Escherichia coli , Porosity , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Methylene Blue/chemistry , Water Purification/methods , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
20.
Int J Biol Macromol ; 266(Pt 1): 131113, 2024 May.
Article En | MEDLINE | ID: mdl-38531524

In order to prevent uranium pollution and recovery uranium resources, it was necessary to find a highly efficient adsorbent for radioactive wastewater treatment. Herein, U(VI) imprinted polyethyleneimine (PEI) incorporated chitosan/layered hydrotalcite composite foam (IPCL) was synthesized by combining ion-imprinting and freeze-drying techniques. IPCL has a high amino/imino content and an ultralight macroporous structure, making it capable of efficiently adsorbing U(VI) and easy to separate; Especially after ion-imprinting, vacancies matching the size of uranyl ions were formed, significantly improving U(VI) selectivity. The adsorption isotherms and adsorption kinetics were in accordance with the Freundlich model and PSO model respectively, indicating that heterogeneous adsorption of U(VI) by the adsorbents. The adsorption capacity of IPCL-2 for U(VI) reached 278.8. mg/g (under the conditions of optimal pH 5.0, temperature of 298 K, contact time of 2 h, and adsorbent dosage of 0.2 g/L), which is almost double of that for the non-imprinted foam (PCL-2, 138.2 mg/g), indicating that IPCL-2 can intelligently recognize U(VI). The heterogeneous adsorption mechanism of U(VI) by IPCL-2 involves complexation, ion-exchange and isomorphic substitution. The adsorption of U(VI) by IPCL-2 is spontaneous and endothermic. IPCL-2 has excellent adsorption performance for U(VI), and is a promising adsorbent for radioactive pollution control.


Aluminum Hydroxide , Chitosan , Magnesium Hydroxide , Polyethyleneimine , Uranium , Uranium/chemistry , Polyethyleneimine/chemistry , Chitosan/chemistry , Adsorption , Aluminum Hydroxide/chemistry , Kinetics , Magnesium Hydroxide/chemistry , Porosity , Hydrogen-Ion Concentration , Water Purification/methods , Temperature , Ions/chemistry
...